Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies.
نویسندگان
چکیده
The particle-particle random phase approximation (pp-RPA) has been used to investigate excitation problems in our recent paper [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. It has been shown to be capable of describing double, Rydberg, and charge transfer excitations, which are challenging for conventional time-dependent density functional theory (TDDFT). However, its performance on larger molecules is unknown as a result of its expensive O(N(6)) scaling. In this article, we derive and implement a Davidson iterative algorithm for the pp-RPA to calculate the lowest few excitations for large systems. The formal scaling is reduced to O(N(4)), which is comparable with the commonly used configuration interaction singles (CIS) and TDDFT methods. With this iterative algorithm, we carried out benchmark tests on molecules that are significantly larger than the molecules in our previous paper with a reasonably large basis set. Despite some self-consistent field convergence problems with ground state calculations of (N - 2)-electron systems, we are able to accurately capture lowest few excitations for systems with converged calculations. Compared to CIS and TDDFT, there is no systematic bias for the pp-RPA with the mean signed error close to zero. The mean absolute error of pp-RPA with B3LYP or PBE references is similar to that of TDDFT, which suggests that the pp-RPA is a comparable method to TDDFT for large molecules. Moreover, excitations with relatively large non-HOMO excitation contributions are also well described in terms of excitation energies, as long as there is also a relatively large HOMO excitation contribution. These findings, in conjunction with the capability of pp-RPA for describing challenging excitations shown earlier, further demonstrate the potential of pp-RPA as a reliable and general method to describe excitations, and to be a good alternative to TDDFT methods.
منابع مشابه
A cubic scaling algorithm for excited states calculations in particle-particle random phase approximation
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This pap...
متن کاملDouble, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.
Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle ran...
متن کاملBenchmark tests and spin adaptation for the particle-particle random phase approximation.
The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal O(N(6)) scaling, the pp-RPA is comput...
متن کاملRandom-phase approximation excitation energies from approximate equation-of-motion ring coupled-cluster doubles
The ground-state correlation energy calculated in the random-phase approximation (RPA) is known to be identical to that calculated using a subset of terms appearing in coupled-cluster theory with double excitations. In particular, this equivalence requires keeping only those terms that generate time-independent ring diagrams, in the Goldstone sense. Here I show that this equivalence extends to ...
متن کاملSinglet-triplet energy gaps for diradicals from particle-particle random phase approximation.
The particle-particle random phase approximation (pp-RPA) for calculating excitation energies has been applied to diradical systems. With pp-RPA, the two nonbonding electrons are treated in a subspace configuration interaction fashion while the remaining part is described by density functional theory (DFT). The vertical or adiabatic singlet-triplet energy gaps for a variety of categories of dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 141 12 شماره
صفحات -
تاریخ انتشار 2014